
Page 1

Using a Stepper Motor Like a Servo Controlled by a Potentiometer
(G Payne – 2017)

Overview:

Stepper Motors can be accurately controlled by digital pulses. They are typically geared. In this demonstration, we’ll

use a potentiometer to control the direction to which the stepper motor points.

 Possible Applications

- Turret control for a water cannon robot

- Directional control for an TV antenna

I will not go into detailed discussions of how stepper motors work in this document.

Please go to Topic 12, “Stepper Motor Basics and Activities” at

www.HausOfPayne.weebly.com/arduino for great resources on Stepper Motors.

Parts Needed:

-Arduino board and breadboard

-1x 10K potentiometer

- Connecting wires

- 28BYJ-48 stepper motor

- UNL2003A Darlington Array motor controller

- Separate 5V power supply to connect Motor controller to the Arduino for safety

 It is NOT recommended to connect the +5V on the controller to the Arduino directly.

Demo:

Connect up the parts on the breadboard and connect it to the Arduino as shown.

A larger picture is on www.HausOfPayne.weebly.com/Arduino under Topic 12.

Page 2

The standard ‘Stepper.h’ library that comes with Arduino is rather basic. For this demo, you will need to download

and install the ‘AccelStepper’ library into your Arduino/libraries folder. It can be downloaded from

http://www.airspayce.com/mikem/arduino/AccelStepper/

In the Arduino IDE, start a new sketch and enter the code below. Save it as ‘potStepperDemo’.

Upload it to the Arduino board.

// Use a stepper motor like a servo when controlled by a potentiometer

// Based on Maker Show Episode 8 by Bret Statem
// https://channel9.msdn.com/Shows/themakershow/8

// You need the AccelStepper library for this sketch to run. You can get it from
// here: http://aka.ms/AccelStepper
// The AccelStepper constructor expects the "pins" specified to be the ends of each

// coil respectively.
// First the ends of the Blue/Yellow coil, then the ends of the Pink/Orange coil //
// (Blue,Yellow,Pink,Orange)

// However, 28BYJ connector, ULN2003 board, and our current configuration is that pins
// are arranged in the proper FIRING order,
// Blue, Pink, Yellow, Orange.

// No biggie, that just means that we need to pay attention to what pins on our
// Arduino,
// map to which ends of the coils, and pass the pin numbers in in the proper sequence.

// To help with that, I will specify my pin variables based on their color.

#include <AccelStepper.h>

#define HALFSTEP 8
#define FULLSTEP 4

#define blue 8
#define pink 9

#define yellow 10
#define orange 11

// How many steps to go before reversing
 int targetPosition = 2048; //2049 steps per rotation when wave or full stepping

// Initialize with pin sequence IN1-IN3-IN2-IN4 for using the
// AccelStepper with 28BYJ-48

// Notice, I'm passing them as Blue, Yellow, Pink, Orange (coil ends order) not
// Blue, Pink, Yellow, Orange (firing order).

AccelStepper stepper1(FULLSTEP, blue, yellow, pink, orange);

// ---

// Gord Payne 2017 - Control the Stepper with a 10K Potentiometer like a servo.
// I'm using FULLSTEP because it's less twitchy and doesn't introduce as much
// interference into the potentiometer as HALFSTEP.

Page 3

int curPot, lastPot; // current potentiometer value, last potentiometer value

int potPin = A0; // potentiometer is connected to analog port A0
int curStep; // the current step that the motor is on (between 0 and 2048)
int curDegree; // will store the degree equivalent of the potentiometer reading

void setup() {
 Serial.begin(9600);

 //Set the initial speed (read the AccelStepper docs on what "speed" means
 stepper1.setSpeed(400.0);
 //Tell it how fast to accelerate

 stepper1.setAcceleration(500.0);
 //Set a maximum speed it should exceed
 stepper1.setMaxSpeed(8000.0);

 //Tell it to move to the target position
 stepper1.moveTo(targetPosition);
 pinMode(potPin, INPUT);

 curPot = analogRead(potPin); // read the starting value for the potentiometer
 curDegree = map(curPot,0,1023,0,360); //scale the value to a degree value between 0
 // and 360

 lastPot = curPot;
 Serial.print(curDegree);
 Serial.print("\t");

 curStep = map(curDegree, 0, 360, 0, 2048);//scale the degree to the corresponding
 //step value
 Serial.println(curStep);

 stepper1.moveTo(curStep); // set the stepper motor to the current step
 stepper1.run(); // execute the motor step change
}

void loop() {
 curPot = analogRead(potPin); // read the potentiometer

 if (abs(curPot - lastPot) > 5) { // if the potentiometer hasn't moved more than 5
 // values

 curDegree = map(curPot,13,1005,0,360); // update values and set the stepper motor
 // to the new direction
 curStep = map(curDegree, 0, 360, 0, 2048);

 Serial.print(curPot);
 Serial.print("\t");
 Serial.print(curDegree);

 Serial.print("\t");
 Serial.println(curStep);
 stepper1.moveTo(curStep);// set the stepper motor to the current step

 lastPot = curPot; // reset the last pot value to the current pot value
 }

 stepper1.run();// execute the motor step change
 delay(5); // slight delay for sketch (Don't go lower than 2. Motor may hang)
}

Page 4

Load the sketch into the Arduino, open the Status Monitor and watch the motor turn as you turn the knob on the

potentiometer.

Now go out and MAKE SOMETHING AMAZING!!!!

