circleBot Assembly

circleBot Parts – A Robot Chassis kit

Any two-wheel drive robot kit will work fine. (ex. DF Robot Turtle)

circleBot Parts – Arduino UNO

circleBot Parts - Bread board

We mount our parts to this board

Red is POSITIVE 5 volts
Blue is NEGATIVE GROUND (GND)

circleBot Parts - Motor Chip

circleBot Parts — BT-05 BluetoothLE module

circleBot Parts – Battery Connector

This one powers the ARDUINO board.

Assemble the kit

Assemble the kit as directed by the instructions in the box. Attach the Arduino UNO to the top with 2 or 3 screws and standoff posts. Attach the breadboard with some zip ties. Attach the 9 volt battery holder to the frame with some tape.

Mount the Components

Arduino is down HERE

circleBot Coding

- Log into a workstation and go to the Windows Apps menu.
- Select Arduino.
- Delete all the code and save the sketch as 'circleBot' in your H drive.
- Enter the code from the following pages.

Take your time. Typos won't work.

SAVE YOUR WORK AS YOU GO!!!

circleBotBlueTooth

```
// circleBot BlueTooth for HC-05(5 pin - BLE) OR HC-06(4 pin NON-BLE) modules
// 2018 - Gord Payne
// BLE (Bluetooth Low Energy) is required for iOS devices
// or newer Android devices with built-in Bluetooth Low Energy
// HC-06 is for older Android devices only
// Recommended App Button Mappings
// Android App - Arduino Bluetooth Controller (ABC) by Ioannis Tzanellis
11
          Works with HC-06. MAY NOT WORK with BLE modules
          For BLE modules, may need a different APP
11
11
   iOS App - BLE Joystick - Works with BLE modules only
11
11
11
   App Button Mappings - these will work with either App
11
                                 character
11
                                sent by App
   UP ARROW - forward
                                   a
   LEFT ARROW - forward left
                                   d
// RIGHT ARROW - forward right
                                   b
   DOWN ARROW - reverse
                                   C
                                   e (rotate left BLE JoyStick) not used on Android app
// TRIANGLE BUTTON
// CROSS BUTTON - stop
                                   g
// SQUARE BUTTON - reverse left
// CIRCLE BUTTON - reverse right f
// SELECT BUTTON - rotate left
                                  i not BLE JoyStick app
// START BUTTON - rotate right
                                  j not BLE JoyStick app
```

```
#include <SoftwareSerial.h>
SoftwareSerial mySerial(8, 7); // TX, RX
// wired connections
// button mapping values
const char fwd = 'a';
const char forL = 'd';
const char forR = 'b':
const char rev = 'c';
const char rotI = 'e'; // rotate left on iOS app only
const char stp = 'g';
const char revL = 'h';
const char revR = 'f';
const char rotL = 'i'; // rotate left on android app
const char rotR = 'j'; // rotate right on android app
int theChar = ' '; // character received from Android device
int lastChar = '/';
int driveChar = '5';
#define aIa 3 // Motor A Input A --> MOTOR B + LEFT from top
#define alb 2 // Motor B Input B --> MOTOR B -
#define bla 5 // Motor A Input A --> MOTOR A + RIGHT from top
#define bIb 4 // Motor A Input B --> MOTOR A -
// functional connections
#define motorBpwm bla // Motor B PWM Speed
#define motorBdir bIb // Motor B Direction
#define motorApwm ala // Motor A PWM Speed
#define motorAdir alb // Motor A Direction
```

```
void setup() {
    Serial.begin(9600); // for diagnostics if needed
    mySerial.begin(9600); // the Bluetooth channel
    pinMode(bIa, OUTPUT);
    pinMode(bIb, OUTPUT);
    pinMode(aIa, OUTPUT);
    pinMode(aIb, OUTPUT);
    pinMode( motorBdir, OUTPUT );
    digitalWrite( motorBdir, LOW );
    analogWrite( motorBpwm, O );
    pinMode( motorAdir, OUTPUT );
    digitalWrite( motorAdir, LOW );
    analogWrite( motorAdir, LOW );
    analogWrite( motorApwm, O);
    delay(150);
}
```

```
void loop()
 if (mySerial.available() > 0) {// if a character has been sent from the App
    theChar = mySerial.read(); // read the character
   if (theChar != lastChar) { //if it's a different character, update lastChar. Otherwise, ignore it.
     lastChar = theChar;
     // display the sent character from the App in the Serial Monitor
     // these characters are for Android devices/Apps. For iOS, consult the information inside the App
     Serial.println(theChar);
     // now do robot action based on the command sent from the App
      switch (theChar) {
       case revL:// square button
         reverseLeft();
         break;
        case rev:
         reverse();
         break;
        case revR: // circle button
         reverseRight();
         break:
       case rotI: // triangle button on BLE Joystick app only
         rotateLeft();
         break:
       case rotL:
         rotateLeft(); // 'select' button on Android app only
         break;
        case rotR:
         rotateRight(); // 'start' button on Android app only
         break;
```

```
case stp:// 'x' button
  allStop();
 break;
case forL:
 forwardLeft();
 break;
case fwd:
 forward();
 break;
case forR:
 forwardRight();
 break;
default:
 break;
```

```
void allStop() ( // stop the robot
  Serial.println("stop");
  digitalWrite(motorBdir, LOW);
  analogWrite( motorBpwm, 0);
  digitalWrite( motorAdir, LOW);
  analogWrite( motorApwm, 0);
void forward() { // drive forward
  Serial.println("forward");
  analogWrite(motorBpwm, 220); // don't use numbers bigger than 240
  analogWrite(motorApwm, 220);
  digitalWrite(motorBdir, LOW);
  digitalWrite( motorAdir, LOW);
void reverse() { // drive backward
  Serial.println("reverse");
  analogWrite(motorBpwm, 30); // notice in reverse, the speeds are OPPOSITE
  analogWrite(motorApwm, 30); // don't use speeds smaller bigger than 100
  digitalWrite(motorBdir, HIGH);
  digitalWrite( motorAdir, HIGH);
```

```
void forwardRight() {
  // Serial.println("forward right");
  analogWrite(motorBpwm , 100);
  analogWrite(motorApwm, 200);
  digitalWrite(motorBdir, LOW);
  digitalWrite(motorAdir, LOW);
void forwardLeft() {
  // Serial.println("forward left");
  analogWrite ( motorBpwm, 200);
  analogWrite(motorApwm, 100);
  digitalWrite(motorBdir, LOW);
  digitalWrite( motorAdir, LOW);
```

```
void reverseLeft() {
  // Serial.println("reverse left");
  analogWrite (motorBpwm, 20);
  analogWrite(motorApwm, 100);
  digitalWrite(motorBdir, HIGH);
  digitalWrite(motorAdir, HIGH);
void reverseRight() {
  // Serial.println("reverse right");
  analogWrite(motorBpwm, 100);
  analogWrite(motorApwm, 20);
  digitalWrite(motorBdir, HIGH);
  digitalWrite(motorAdir, HIGH);
1
```

```
void rotateRight() {
  // Serial.println("rotate right");
  analogWrite (motorBpwm, 150);
  analogWrite(motorApwm, 150);
  digitalWrite(motorBdir, LOW);
  digitalWrite(motorAdir, HIGH);
}
void rotateLeft() {
  // Serial.println("rotate left");
  analogWrite (motorBpwm, 150);
  analogWrite(motorApwm, 150);
  digitalWrite( motorBdir, HIGH);
  digitalWrite(motorAdir, LOW);
}
```

SAVE YOUR WORK!!!

Uploading your code

Go to the Tools Menu. Select the **Board** and the **Port** as below:

NOTE: for school computers, NEVER choose COM1 or COM3.

Click the Right Arrow button at the top left of the Arduino screen.

Arduino will attempt to compile and upload your code to the Arduino board on the robot. You'll see a green progress bar in the lower right of the screen.

If you entered the code correctly, you'll see 'Done uploading.' in the bottom left of the Arduino screen.

If not, you have some debugging to do! ©

Setting up the App

Android App

A recommended app is

'Android Bluetooth Controller'

Pair the app to the Bluetooth module and then select 'Controller Mode'. In the top right corner you'll be able to choose the 'Set Commands' option and assign the different characters to be sent when each button is pressed. (see the Arduino code for the characters for each robot function)

iOS App

A recommended app is

'BLE Joystick'

Just click the 'Bluetooth' icon in the top right and select your Bluetooth module. Then start driving your robot!

Some Ideas for Adding to your Robot

- Add an SH-04 distance device and have the robot stop when it encounters an obstacle
- Add a second Bluetooth module(just need another SoftwareSerial object line on new pins) and you can have a second phone control more devices (servos, LEDs etc)
- Attach a phone to the bot and use Facetime(or other) to do FPV driving (like a Mars Rover!)
- Endless possibilities!!!

NOW GO OUT AND MAKE SOMETHING WONDERFUL!!!

